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The analysis in this paper shows that, after an impulse due to a two-dimensional jet having
velocity; and density o hitting a rigid body, the initial pressure distribution over the wall has
the constant value o;2 relative to the ambient pressure. It also reveals that a discontinuity
exists in the pressure at the intersection of the surface of the body and the surface of the jet.
These results have been con"rmed by a numerical solution based on a boundary element
method. ( 2001 Academic Press
1. DESCRIPTION OF THE PROBLEM

WE CONSIDER THE PROBLEM, of a #at-headed jet with velocity ; and thickness 2d moving
towards a rigid wall. When the jet hits the surface of the body, shown in Figure 1, it might
seem plausible to assume that the pressure over the wall will vary from the ambient pressure
at the intersection point A to a higher value at the centre-point O of the jet. Although it is
less convincing, one may also speculate that the pressure across a thin jet near the wall
should be equal to the ambient pressure, namely the pressure away from the wall. What is
observed in this paper, however, does not entirely follow these hypotheses. The problem
presented here is dynamically equivalent to the case where the #uid is at rest and is in
contact with the solid surface which starts moving suddenly with velocity ;. As argued by
Wu (1998), for this kind of problem associated with sudden motion, the initial impact can be
divided into two stages: (i) the impulsive stage between 0

~
4t(0

`
, and (ii) the

post-impulse stage t"0
`

. The results within these two stages are quite di!erent, as shown
in what follows.

2. THE IMPULSIVE STAGE

As stated in Section 1, the jet impact problem is dynamically equivalent to the problem of
a rigid plate moving suddenly against the liquid which was at rest. The viscous e!ect is not
important during the initial stage of the impact, as the spatial gradients are negligible in
comparison with the time derivative (Batchelor 1967, p. 471). Thus, the problem can be
solved based on the assumptions of potential #ow. Due to symmetry, the centreline of the jet
can be treated as a rigid surface, as shown in Figure 2. The governing equation and
boundary conditions can then be given as
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Figure 1. Sketch of the problem.

Figure 2. Computational model.
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in the #uid domain;
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The last equation can be obtained following the argument in Batchelor (1967, p. 473).
The solution for this problem can be found quite easily, see Peregrine (1972), for example.

It can be written as

/"

2;

d

=
+
n/0

(!1)n`1

k2
n

e~,nxcos k
n
(y#d), (6)

where k
n
"(nn#n/2)/d. The pressure distribution could then be obtained from the

Bernoulli equation
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where o is the density of the liquid and the subscript t indicates derivative, and zero ambient
pressure has been assumed. Because the time period over which the impact occurs is zero,
the pressure will be in"nite. But what is of practical interest in this case is the pressure
impulse de"ned as (Batchelor 1967, p. 471)
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pdt"!o/. (8)

This equation shows that the variation of the impulse follows that of the potential, which
varies from zero at y"0 to a maximum value at y"!d along the wall (see Table 1). The
result is therefore consistent with the "rst hypothesis in the introduction.

3. PRESSURE DISTRIBUTION IMMEDIATELY AFTER THE IMPULSE

Immediately after the impulsive stage, the time derivative is no longer in"nite. Both terms
on the right-hand side of equation (7) should be included in the calculation of pressure. At
t"0

`
, the potential itself is the same as that given in equation (6) but /

t
becomes unknown.

Note that /
t
satis"es the Laplace equation. On y"0, the Bernoulli equation gives
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On the solid wall, we have (Wu 1998)
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The other boundary conditions on /
t
are the same as those on /. It would then be possible

to treat /
t
as another potential which could be derived in a manner similar to that used to

obtain /. The procedure would be straightforward. But even that is not necessary for this
particular con"guration. In fact, it can be con"rmed that
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satis"es all the boundary conditions and the Laplace equation, despite the product terms.
The Bernoulli equation becomes

p"2o;/
x
!o/2

x
. (12)

Using equation (2), the pressure on the body surface can be found as

p"o;2, (13)

which is a constant. This is a quite surprising result and it shows that neither of the
hypotheses in Section 1 is valid at this stage of the impact. The result also shows that the
pressure is discontinuous at the intersection point A; it equals o;2 if the point is
approached from the solid surface, and equals zero if the point is approached along y"0.
The contradiction is clearly due to the incompatibility of the conditions on / in equations
(2) and (4). It is well known that this incompatibility leads to an in"nitely large vertical
velocity at the intersection and in a numerical analysis (e.g. Lin et al. 1985) some suitable
treatment is needed in order to obtain a realistic solution for the #ow near the intersection.
The discontinuity in pressure caused by the incompatibility revealed here seems not to have
been observed before.

To verify equation (13), the boundary value problems for / and /
t
have been solved

numerically, using a boundary element method (Wu & Eatock Taylor 1995). The length of



TABLE 1
Potential along the body surface

y/d //;d (s/d"0)01) //;d (s/d"0)02) //;d (s/d"0)04) Equation (6)

0)00 0)000 0)000 0)000 0)000
!0)01 !0)037 !0)038
!0)02 !0)066 !0)066 !0)065
!0)03 !0)091 !0)091
!0)04 !0)114 !0)114 !0)114 !0)113
!0)05 !0)135 !0)135
!0)06 !0)155 !0)155 !0)155
!0)07 !0)174 !0)173
!0)08 !0)192 !0)192 !0)192 !0)192
!0)09 !0)209 !0)209
!0)10 !0)226 !0)226 !0)226
!0)11 !0)241 !0)241
!0)12 !0)257 !0)257 !0)257 !0)257
!0)13 !0)272 !0)272
!0)14 !0)286 !0)286 !0)286
!0)15 !0)300 !0)300
!0)16 !0)313 !0)313 !0)313 !0)313
!0)17 !0)326 !0)326
!0)18 !0)339 !0)339 !0)338
!0)19 !0)351 !0)351
!0)20 !0)363 !0)363 !0)363 !0)363
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the computational domain is taken as 10d. As the main concern here is not computational
e$ciency, uniform elements of length s have been used over the boundary. Tables 1 and
2 give the potential and pressure, respectively, along the body surface, when di!erent values
of s are used. Results are provided between y"0 to !0.2d to highlight their behaviour in
this region of interest. It can be seen that the numerical solutions agree well with the results
in equations (6) and (13), apart from the pressure near the intersection. This discrepancy is
due to the discontinuity.

Using the numerical method, it is possible to analyse the jet deformation based on the
time-marching technique. If the #ow "eld is the main interest in the analysis, the observed
discontinuity in the pressure should not cause too much concern, because the pressure is
a product obtained after the potential has been found. It has no feedback to the #ow if the
body is rigid and "xed. In other cases, such as an elastic plate or a non"xed rigid body,
correct prediction of pressure is an essential part of the analysis, as observed by Lu, et al.
(2000). An error in the pressure will lead to a false response of the body, which will in turn
give a false feedback to the #ow. It is quite possible that the error will accumulate with time,
and the numerical solution will depart from reality, with instabilities possibly occurring.
Thus, proper understanding of the pressure behaviour is extremely important in the
development of numerical analyses. Table 2 shows that the nondimensionalized pressure is
near unity everywhere else, but behaves rather erratically near the intersection. This kind of
behaviour would be almost certain to cause concern to the numerical analyst. Equation (13)
gives a clear indication that such behaviour is not abnormal. Indeed, Table 2 shows that the
region in which the erratic behaviour can be observed becomes smaller as the element size is
reduced. It also shows that at a given point below y"0, the result does indeed tend to one
as s is decreased. All these observations are consistent with what is found in this paper.



TABLE 2
Pressure along the body surface

y/d p/o;2 p/o;2 p/o;2
(s/d"0)01) (s/d"0)02) (s/d"0)04)

0)00 0)000 0)000 0)000
!0)01 !0)257
!0)02 0)842 !0)114
!0)03 0)920
!0)04 0)954 0)868 0)029
!0)05 0)970
!0)06 0)979 0)933
!0)07 0)985
!0)08 0)988 0)962 0)895
!0)09 0)990
!0)10 0)992 0)975
!0)11 0)993
!0)12 0)994 0)983 0)946
!0)13 0)995
!0)14 0)996 0)987
!0)15 0)996
!0)16 0)996 0)990 0)969
!0)17 0)997
!0)18 0)997 0)992
!0)19 0)997
!0)20 0)998 0)993 0)980
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4. CONCLUDING REMARKS

The main result obtained in this paper is the pressure distribution at t"0
`
, immediately

after an impulse. The discontinuity in pressure is due to the incompatibility of the
conditions for the potential at the intersection. /"0 used on y"0 is a result of the product
term in the Bernoulli equation being ignored during the impulse, based on the assumption
that the spatial gradients are much smaller than the time derivative during the impulse.
Equation (6) shows that such an assumption is valid everywhere apart from at the
intersection. In fact, at point A, u

y
PR and one cannot automatically assume that u

t
Au2

y
.

Because these two terms tend to in"nity in the temporal and spatial domains, respectively, it
is not straightforward to compare their relative magnitudes. It is therefore important to
emphasize that the discontinuity noticed in this paper may be a result of the mathematical
model. Further investigation is clearly needed, especially some experimental work, similar
to that by Chan (1994) and Smith et al. (1998).

The signi"cance of what has been discussed here may mainly lie in the implications for
numerical simulation. Some treatment for the pressure shown in Table 2 is clearly needed, if
one is going to use it to calculate the plate deformation. In this context, the result given in
equation (13) would be valuable. However, this paper does not o!er any real contribution
towards resolving the singularity mathematically, such as by introducing an inner solution.
This is, on the other hand, not the motivation of this work.

It is also worth pointing out that, in reality, impact may start from t"t
b

and end at
t"t

a
. In his paper, Cooker (1996) o!ered a model for t

a
!t

b
O0, which included both the

spatial and temporal derivatives in the Bernoulli equation when the dynamic condition is
imposed on y"0. But it is fair to say that it is still not clear whether his model re#ects
physical reality.
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